
AspectC++ Quick Reference
Concepts
Aspects are modular implementations of crosscutting concerns. They can
affect join points in the component code, e.g. class definitions, or in the
dynamic control flow, e.g. function calls, by advice. A set of related join
points is called pointcut and defined by a pointcut expression.

Aspects
Aspects extend the concept of C++ classes. They may define ordinary
class members as well as advice.

aspect A : public B { ... };
defines the aspect A, which inherits from class or aspect B

Slices
A slice is a fragment of a C++ element like a class. It may be used by
introduction advice to implemented static extensions of the program.

slice class ASlice { ... void f (); ... };
defines a class slice called ASlice

slice void ASlice::f () { ... }
defines a non-inline member function f() of slice ASlice

Advice
An advice declaration specifies how an aspect affects a set of join points.

advice pointcut : around(...) {...}
the advice code is executed in place of the join points in the pointcut

advice pointcut : before/after(...) {...}
the advice code is executed before/after the join points in the pointcut

advice pointcut : order(high, ...low);
high and low are pointcuts, which describe sets of aspects. Aspects
on the left side of the argument list always have a higher precedence
than aspects on the right hand side at the join points, where the order
declaration is applied.

advice pointcut : slice class : public Base {...}
introduces a new base class Base and members into the target classes
matched by pointcut.

advice pointcut : slice ASlice ;
introduces the slice ASlice into the target classes matched by pointcut.

Match Expressions
Match expressions are primitive pointcut expressions. They filter program
entities based on their signature.

Type Matching

"int"
matches the C++ built-in scalar type int

"% *"
matches any pointer type

Namespace and Class Matching

"Chain"
matches the class, struct or union Chain

"Memory%"
matches any class, struct or union whose name starts with “Memory”

Function Matching

"void reset()"
matches the function reset having no parameters and returning void

"% printf(...)"
matches the function printf having any number of parameters and
returning any type

"% ...::%(...)"
matches any function, operator function, or type conversion function
(in any class or namespace)

"% ...::Service::%(...) const"
matches any const member-function of the class Service defined
in any scope

"% ...::operator %(...)"
matches any type conversion function

"virtual % C::%(...)"
matches any virtual member function of C

"static % ...::%(...)"
matches any static member or non-member function

Variable Matching

"int counter"
matches the variable counter of type int

"% guard"
matches the global variable guard of any type

"% ...::%"
matches any variable (in any class or namespace)

"static % ...::%"
matches any static member or non-member variable

Template Matching†

"std::set<...>"
matches all template instances of the class std::set

"std::set<int>"
matches only the template instance std::set<int>

"% ...::%<...>::%(...)"
matches any member function from any template class instance in
any scope

Predefined Pointcut Functions
Predefined pointcut functions are used to filter, map, join, or intersect
pointcuts.

Functions / Variables

call(pointcut) N→CC
‡‡

provides all join points where a named and user provided entity in the
pointcut is called.

builtin(pointcut)‡ N→CB

provides all join points where a named built-in operator in the point-
cut is called.

execution(pointcut) N→CE

provides all join points referring to the implementation of a named
entity in the pointcut.

construction(pointcut) N→CCons

all join points where an instance of the given class(es) is constructed.
destruction(pointcut) N→CDes

all join points where an instance of the given class(es) is destructed.
get(pointcut) N→CG

provides all join points where a global variable or data member in the
pointcut is read.

set(pointcut) N→CS

provides all join points where a global variable or data member in the
pointcut is written.

ref(pointcut) N→CR

provides all join points where a reference (reference type or pointer)
to a global variable or data member in the pointcut is created.

pointcut may contain function, variable, namespace or class names. A
namespace or class name is equivalent to the names of all functions and
variables defined within its scope combined with the || operator (see be-
low).

Control Flow

cflow(pointcut) C→C
captures join points occuring in the dynamic execution context of join
points in the pointcut. The argument pointcut is forbidden to contain
context variables or join points with runtime conditions (currently
cflow, that, or target).

Types

base(pointcut) N→NC,F

returns all base classes resp. redefined functions of classes in the
pointcut

derived(pointcut) N→NC,F

returns all classes in the pointcut and all classes derived from them
resp. all redefined functions of derived classes

Scope

within(pointcut) N→C
filters all join points that are within the functions or classes in the
pointcut

member(pointcut) N→N
maps the scopes given in pointcut to any contained named entities.
Thus a class name for example is mapped to all contained member
functions, variables and nested types.

Context

that(type pattern) N→C
returns all join points where the current C++ this pointer refers to
an object which is an instance of a type that is compatible to the type
described by the type pattern

target(type pattern) N→C
returns all join points where the target object of a call or other access
is an instance of a type that is compatible to the type described by the
type pattern

result(type pattern) N→C
returns all join points where the result object of a call/execution or
other access join point is an instance of a type described by the type
pattern

args(type pattern, ...) (N,...)→C
a list of type patterns is used to provide all joinpoints with matching
argument signatures

Instead of the type pattern it is possible here to pass the name of a context
variable to which the context information is bound. In this case the type
of the variable is used for the type matching.

Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C
intersection of the join points in the pointcuts

pointcut || pointcut (N,N)→N, (C,C)→C
union of the join points in the pointcuts

! pointcut N→N, C→C
exclusion of the join points in the pointcut

Named Pointcuts and Attributes
Pointcut expressions can also refer to user-defined pointcuts.

class [[myns::myattr]] C {...}
annotates class C with the attribute myattr from the namespace myns.

pointcut mypct() = “C”;
defines a “named pointcut” mypct(), which represents the class “C”

attribute myattr (); // in myns
declares a user-defined attribute myattr(), which also represents “C”

JoinPoint-API for Advice Code
The JoinPoint-API is provided within every advice code body by the built-
in object tjp of class JoinPoint.

Compile-time Types and Constants

That [type]
object type (object initiating a call or entity access)

Target [type]
target object type (target object of a call or entity access)

Entity [type]
type of the primary referenced entity (function or variable)

MemberPtr [type]
type of the member pointer for entity or “void *” for nonmembers.

Result [type]
type of the object, used to store the result of the join point

Res::Type, Res::ReferredType [type]
result type of the affected function or entity access

Arg<i>::Type, Arg<i>::ReferredType [type]

type of the i th argument of the affected join point (with 0≤ i<ARGS)
ARGS [const]

number of arguments
Array [type]

type of an accessed array
Dim<i>::Idx, Dim<i>::Size [type], [const]

type of used index and size of the i th dimension (with 0≤ i < DIMS)
DIMS [const]

number of dimensions of an accessed array or 0 otherwise
JPID [const]

unique numeric identifier for this join point
JPTYPE [const]

numeric identifier describing the type of this join point (AC::CALL,
AC::BUILTIN, AC::EXECUTION , AC::CONSTRUCTION,
AC::DESTRUCTION, AC::GET , AC::SET or AC::REF)

Runtime Functions and State

static const char *signature()
gives a textual description of the join point (type + name)

static const char *filename()
returns the name of the file in which the joinpoint shadow is located

static int line()
the source code line number in which the joinpoint shadow is located

That *that()
returns a pointer to the object initiating a call or 0 if it is a static
method or a global function

Target *target()
returns a pointer to the object that is the target of a call or 0 if it is a
static method or a global function

Entity *entity()
returns a pointer to the accessed entity (function or variable) or 0 for
member functions or builtin operators

MemberPtr memberptr()
returns a member pointer to entity or 0 for nonmembers

Result *result()
returns a typed pointer to the result value or 0 if there is none

Arg<i>::ReferredType *arg<i>()
returns a typed pointer to the i th argument value (with 0≤ i < ARGS)

void *arg(int i)
returns a pointer to the i th argument memory location (0≤ i< ARGS)

void proceed()
executes the original code in an around advice (should be called at
most once in around advice)

AC::Action &action()
returns the runtime action object containing the execution environ-
ment to execute (trigger()) the original code encapsulated by an
around advice

Array *array()
returns a typed pointer to the accessed array

Dim<i>::Idx idx<i>()
returns the value of the i th used index

Runtime Type Information

static AC::Type resulttype()
static AC::Type argtype(int i)

return a C++ ABI V3†† conforming string representation of the result
type / argument type of the affected function

JoinPoint-API for Slices
The JoinPoint-API is provided within introduced slices by the built-in
class JoinPoint (state of target class before introduction).

static const char *signature()
returns the target class name as a string

That [type]
The (incomplete) target type of the introduction

BASECLASSES [const]
number of baseclasses of the target class

BaseClass<I>::Type [type]

type of the I th baseclass
BaseClass<I>::prot, BaseClass<I>::spec [const]

Protection level (AC::PROT_NONE /PRIVATE /PROTECTED
/PUBLIC) and additional specifiers (AC::SPEC_NONE /VIRTUAL)
of the I th baseclass

MEMBERS [const]
number of member variables of the target class

Member<I>::Type, Member<I>::ReferredType [type]

type of the I th member variable of the target class
Member<I>::prot, Member<I>::spec [const]

Protection level (see BaseClass<I>::prot) and additional member
variable specifiers (AC::SPEC_NONE /STATIC /MUTABLE)

static ReferredType *Member<I>::pointer(T *obj=0)
returns a typed pointer to the I th member variable (obj is needed for
non-static members)

static const char *Member<I>::name()
returns the name of the I th member variable

Example (simple tracing aspect)
aspect Tracing {

advice execution(“% Business::%(...)”) : before() {
cout << "before " << JoinPoint::signature() << endl;

} };

Reference sheet corresponding to AspectC++ 2.3, July 12, 2022. For
more information visit http://www.aspectc.org.

(c) Copyright 2021, AspectC++ developers. All rights reserved.

†support for template instance matching is an experimental feature
‡This feature has limitations. Please see the AspectC++ Language Reference.
††https://mentorembedded.github.io/cxx-abi/abi.html#mangling
‡‡C, CC, CB, CE, CCons, CDes, CG, CS, CR: Code (any, only Call, only Builtin, only Execution,
only object Construction, only object Destruction, only Get, only Set, only Ref)
N, NN , NC , NF , NV , NT : Names (any, only Namespace, only Class, only Function, only
Variables, only Type)

